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Abstract 

 

 This paper describes methodology of direct numeric calculation of fiber magneto-

rheological suspensions at particle level. Magnetic forces along with bidirectional hydro-

dynamic interactions are taken in account. The model does not include Brownian motion of 

particles. Both particle and fluid inertia are taken into account. An analytic hydrodynamic 

description for prolate spheroids is used, and the prolate spheroid-cylinder hydrodynamic 

equivalency condition is applied. The fluid flow is calculated using finite difference methods 

in vorticity-vector potential formulation. A home-made software was developed to perform 

these calculations. Test results show that the chosen approach is suitable for simulation of 

magnetorheological suspension composed of ferromagnetic fibers. 

 

Introduction 

 

 Magnetorhological suspensions (MRS) is a kind of functional material, the rheological 

properties of which can be controlled my magnetic field. MRS is composed of small 

ferromagnetic particles suspended into a carrier fluid. In external magnetic field particles 

magnetize and interact one with another changing the attributes of MRS. Traditionally MRS 

components are spherical particles. It is expected that MRS with rod-like particles will be 

with different features and new applications. 

 

1. General Information 

 

 Calculations are made in space of rectangular box 



Lx  Ly  Lz (fig. 1). Coordinate system origin is placed in one 

corner, axis are directed along the edges, besides that z-axis is 

assumed to be the vertical axis, along which magnetic field is 

directed. The two horizontal sides are impenetrable walls, but 

four remaining vertical sides are periodic MRS boundaries. The 

lower horizontal wall remains motionless. The upper horizontal 

wall is moving in the direction of x-axis with velocity U (as 

shown in fig. 1) creating shear-flow. 

 MRS is simulated as two-phase fluid: discrete (Lagrange) phase consists of rod-like 

ferromagnetic particles, whereas continuous (Euler) phase is carrier fluid. 

 

2. Discrete phase 

 

 The main algorithm is taken from [1]. Particle motion is simulated by calculating dis-

crete versions of force balance equations 

 

Fig. 1. Model space 
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 The index n-1 means previous time step. I is particle inertia tensor, m is particle mass, 

v


 and 


 are velocity and angular velocity of the particle. The right sides of both equations 

are sum of all forces and force moments on the particles, and left sides are inertia forces. 

From these equations one can find particle velocities in current time step v


 and 


. 

 

2.1. Hydrodynamic Forces 

 Hydrodynamic force equations are taken from analytic 

solution for single spheroid particle in laminar fluid flow [1, 2]. It can 

be done because of semi-empiric relation [3] which states the 

hydrodynamic equivalence of prolate spheroid and cylinder of same 

length (as shown in fig. 2) if D
lDb ln2 24.1

1 , where 2b and D are 

the diameter of spheroid and cylinder respectively, and 2a = l are the 

length of both spheroid and cylinder.  

2.2. Magnetic Forces 

 The description of magnetic forces is based on a simple 

“Magnetic Coulomb Force” model. Magnetic charges of opposite sign 

are placed at both ends of each rod; the magnetic force is given by 
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where ***

ji rrr


 , ** rr


  is distance between “magnetic charges”, 

each of which belong to i-th and j-th particle, whereas iS  and jS  are 

particle cross-section areas respectively. The magnetic charge 

intensity depends on the angle between the rod and external magnetic 

field, therefore coefficients like  zez

  emerge. Total force on particle 

is sum of forces between charges.  

 

2.3. Contact Forces 

When two particles are completely or almost in contact, new interaction forces 

emerge: normal forces, friction forces and lubrication forces. Normal forces prevent particles 

from overlapping. Because the geometry of particles is not spherical, the direction of contact 

forces ijn


 highly depends on particle alignment in the specific contact situation. For details on 

ijn


 see [4]. Normal force is chosen to be compilation of exponential and linear functions: 
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Fig. 2. Hydrodynamic 

equivalency of prolate 

spheroid and cylinder 

Fig. 3. “Magnetic 

Coulomb Force” 

model 
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where 2

ji DD

ijij gd





 is the distance between particle surface at the point of contact and D  

is surface roughness. Vector ijg


 connects points on both particle axis. In most cases (when 

0


ijg ) expression ijij ng


||  is true. The rods overlap if ijd  is negative. Parameter 0d  controls 

sensitivity of the exponent, here is assumed 4/0 iDd  . Coefficient cF  is chosen to be 

comparable with typical system forces: viscous drag forces, dynamic drag forces and 

magnetic forces. Therefore 



Fc  is chosen to be 

 

  22
2

0
2**

164

3

3

1

2

1

2

3
DMwlDwlFc






   , 

 

where a bar over a quantity means the mean value over all particles. 

 For friction and lubrication forces, the relative velocity of particle contact points is 

needed. It can be defined using linear contact coordinates 



Sij  and 



S ji  with respect to particle 

centers along the axis of each particle: 
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where the approximation of unknown velocities jv


 and j


 of j-th particle was taken from 

previous time step n-1. 

 Friction force acts in plane perpendicular to the normal force and is a function of its 

absolute value. The direction of friction force is defined by the projection of *

ijv


  in the 

mentioned plane:     ***

ijijijijijijij vnnnvnv
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  , where right hand side is rewritten using 

tensor notation. So the friction force can be written as 
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where f  is the coefficient of friction. However *

ijv


  cannot stand in denominator, because 

the velocities iv


 and i


 of current time step should be extracted and moved from right hand 

side to left hand site in equation (1). Therefore as normalization coefficient will be used 

approximation 



w *, which stands for mean relative velocity between particle and fluid over all 

particles, so the friction force will be 
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 By taking into account surface roughness [5], lubrication force is given with 

expression 
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are taken from [6] and [7] respectively.  jiij ll  ,min  is particle overlap length in the 

direction of near parallel particle axis. 

 The sum of all contact forces on i-th particle is 
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and in most cases this causes also force moment 

 

c

ijijiij

c

ij FgzST












2

1
. 

 

2.4. Impulse Conservation 

 Because discrete and continuous phases are calculated consecutively and apart of each 

other, impulse conservation should be enforced specifically. This is done by ensuring hydro-

dynamic force operation in both phases. For one hand force h

iF


 is included in particle force 

balance equation (1) right hand side. For another hand reverse direction is provided by adding 
h

iF


  to fluid calculation equations shown below. Because fluid flow calculation equations 

does not contain force momentum, it should be converted to force pair as follows: i
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2.5. Discrete Phase Boundary Conditions and Particle Positions 

 The boundary conditions of discrete phase say that horizontal walls should be 

impenetrable for particles. However vertical boundaries are cyclic in all other directions: each 

particle traversing some vertical boundary should reappear near opposite boundary in the 

direction of x or y axis. For fully cyclic calculations, eight virtual particles should be defined 

for each “real” particle in eight virtual spaces lying adjacent to the calculation space in x and y 

directions. Each virtual particle interacts with each “real” particle, but not with other virtual 

particles. Similarly is ensured the ferromagnetic properties of horizontal walls: particles are 

mirrored along the plane of each wall obtaining more virtual particles. By letting them interact 

with original particles, the ferromagnetic wall effect is obtained. 

 The goal of simulation is to calculate particle motion. Using above equations together 

with (1) particles velocities v


 and 


 in current time step can be calculated. And by knowing 

particle velocities, it is possible to calculate the new particle positions in current time step. 
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New particle position r


 with respect to the old 1nr


 will be vtrr n
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3. Continuous Phase 

 

 Fluid flow are simulated by numerically calculating Navier-Stokes equations of fluid 

motion in vorticity-vectorpotential formulation [8]: 
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where 


 is vectorpotential such that fluid velocity 


u , u


  is vorticity,   is 

kinematic viscosity,   is density, and f


 are forces per volume. Given equation system is 

solved together with following boundary conditions on horizontal walls 
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and initial condition 
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 The first boundary conditions allow for vectorpotential components 



x  and 



y  on 

both walls to be defined as a free constant, therefore employing common reasoning, one can 

find that 
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However by the same reasoning, on vertical side boundaries vectorpotential should have 

cyclic condition (


 values coincides on opposite sides), which enforces periodic continuous 

phase. 

 Given fluid flow equations are discretized using difference scheme and are calculated 

on mesh nodes. Calculated values on nodes with tri-linear interpolation are used to calculate 

needed quantities anywhere in calculation space. Volume forces are similarly distributed to 

mesh nodes by using similar tri-linear interpolation:    0rrNrFF ii


 , where i stands for 

local mesh node index and 



N i  is respective node tri-linear interpolation function. 

 

4. Results 

 

 Single particle in shear-flow performs rotation along its center of mass. Such rotations 

are called Jeffery orbits and are theoretically derived. In numeric simulations obtained 

rotation periods are with good agreement with theoretical values with max 5% error. Theore-

tical Jeffery orbit period [9] is  
ererT 12

0
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U0  is shear flow gradient. 
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 Performing simulations with small number of particles, one can observe, that fibers try 

to make vertical chains as a result of magnetic force interactions between particles. Similar 

chains can be observed when performing simulations with greater volume fractions (as seen in 

fig. 4). 

 

Conclusions 

 

The test results confirm that the 

numerical algorithm, and software 

developed are adapted to simulate the 

magnetorheological suspension in the 

case of the rod-like ferromagnetic 

particles. Momentum exchange 

between the two phases ensures that 

the quantitative estimate of the 

effective viscosity is possible if the 

relatively large amount of particles is 

simulated. 
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