
221 

N
S

v v

h
d

d

x

y

z

m

 
Fig. 1. Sketch and geometry parameters of the studied 

problem  
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Abstract 

 

The drag force acting on a magnetic dipole due to the motion of a conducting 

rectangular bar in its field is computed by finite element analyses for different orientations of 

the dipole. The study is motivated by the novel techniques termed Lorentz Force Velocimetry 

(LFV) and Lorentz Force Eddy Current Testing (LET) for non-contact measurements of the 

velocity of a conducting liquid and for detection of defects in the interior of solid bodies. The 

present, simplified configuration provides important scaling laws and reference results for 

complete numerical simulations. The results of computations are also compared with 

analytical solutions for an infinite plate.  

 

Introduction 

 

 Lorentz Force Velocimetry (LVF) is a modern, contactless technique for measuring 

flow rates and velocities of moving conducting liquids. It can be used in situations where 

mechanical contact of a sensor with the flowing medium must be avoided due to high 

temperatures and chemical reactions [1]. Possible applications include flow measurement in a 

Submerged Entry Nozzle during the continuous casting of steel, in ducts and open channel 

flows of liquid aluminium alloys in aluminium production [2], and in other metallurgical 

processes where hot liquid metal or glass flows are involved.  Eddy Current Testing (ECT) 

can serve as a basic tool for detecting sub-surface defects (cracks) in metallic constructions 

where these defects are 

critical for safety, e.g. air 

and railroad transport, 

engines, bridges, etc. 

 At the origin of LFV 

and ECT is Lenz‟ rule of 

magnetic induction.  Its use 

for flow rate measurement 

was already proposed in 

[3]. Eddy currents are 

induced in a conductor 

which is moving in a 

(primary) magnetic field. 

The interaction of these 

eddy currents with the 

primary magnetic (Fig. 1) 

field creates a force that 

opposes the motion by 
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Lenz‟ rule. The magnetic system, which creates the primary magnetic field, experiences a drag 

force acting along the direction of the conductor motion. Simple estimations show that this 

force is 2~ vBF  , where  is the electrical conductivity of the moving conductor, v=vx=const 

is the velocity and B is the magnetic induction. Measuring this force acting on the magnetic 

system, allows us to measure the velocity of the moving conductor with high precision. 

 The drag force increases quadratically with the magnetic induction. This allows one to 

increase the sensitivity of this measurement technique by increasing the magnetic field 

intensity, whereby it can, in principle, be applied to poorly conducting bodies like electrolytes, 

ceramics or glass melts. However, this still requires research on the proper magnetic system 

design and optimization as well as an accurate and advanced force measurement system.  

 In general, one cannot find an analytical solution for the force acting on a realistic 

magnet system even when the motion of the conducting body is very simple. Only a few 

cases, which replace the real magnetic system by the magnetic dipole or simple coil, are 

known to have analytical solutions [4, 5]. However, these simplified problems are very 

important for LFV theory, because they allow a better understanding of the physics and 

provide reference data for complex numerical simulations. In the present paper, we consider a 

moving rectangular conducting bar in a field of the magnetic dipole, which represents a 

canonical problem for LFV theory. It generalizes the case of an infinite conducting plate, 

which can be treated analytically [5]. Its solution can be directly compared with results 

obtained from LVF and ECT applications for duct flows and solids without defects.  

 

1. Mathematical Formulation of the Problem and Numerical Procedure 

 

 We consider an electrically conducting non-magnetic infinite solid bar with square 

cross-section d×d (Fig. 1), which is moving with a constant velocity v in x direction in the 

field B


of a magnetic dipole with the magnetic dipole moment m


. If the origin of the 

coordinate system corresponds to the dipole location then the field of the dipole at distance r


 

can be expressed as [6]: 
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 Eddy currents are induced in the bar when it crosses the magnetic field lines. They 

create a secondary magnetic field b


. In this work, we assume that the magnetic diffusion time 

is small and we can neglect the secondary magnetic field with respect to the primary magnetic 

field, i.e. the quasi-static approximation [7] is applied. It also means that for selected ranges of 

velocity v, electric conductivity  and length scale h the magnetic Reynolds number 

Rm=0vh is small. The motion of the bar is prescribed, i.e. we consider the kinematic 

problem.  

 For the analysis we will use non-dimensional units based on the characteristic length 

L0=d, characteristic velocity equal to the bar velocity V0=v and the characteristic magnetic 

field intensity B0= 3

0

0

L

m
.  This selection of characteristic parameters leads to the following 

expressions for the current density *

0 jvBj


  and Lorentz force *3

0

2

0 FLvBF


  where „star‟ 

symbol represents non-dimensional quantities (omitted below). 
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  a)     b) 

 

Fig. 2. Refined grid used for numerical simulations (the bar size 

is 7.5×1×1): a) a central part for z=const, b) x=const 

 In the quasistatic approximation, the electric field can be represented as the gradient of 

the electrical potential .  The induced current density can be expressed by Ohm‟s law for 

moving conductor as: 

 

Bvj


  . (1.2) 

  

 The moving bar is electrically neutral and according to the conservation of electric 

charge, the induced currents should be divergence-free 0 j


. Since the magnetic field of 

the dipole is solenoidal [6] and the velocity distribution uniform, the electrical potential 

satisfies the Laplace equation:  

 

02   . (1.3) 

  

A solution of this equation is required to obtain eddy currents using equation (1.2).  

Appropriate boundary conditions (BC) require zero normal currents on all side surfaces of the 

bar 0 nj


. We also require that the electrical potential and currents should vanish at the 

remote ends. 

      A general analytical 

solution of the problem 

with the described BC 

could not be obtained. 

For this reason, an 

automated Matlab
TM

 

script coupled with    

the Comsol
TM

 FEM     

Laplace „pardiso‟  

solver [8] was used to 

solve it numerically for 

the electrical potential 

using second order 

Lagrangian elements 

[9]. The Lorentz force 

was later computed taking the volume integral of its density dVBjF
V


  or using the Biot-

Savart law for secondary field computation at location of the dipole. The force and torque then 

can be found as bmF


)(  and bmT


 correspondingly. The integration procedure was 

implemented using built-in Comsol
TM

 functions. 

 Our preliminary results showed that the accurate solution of the problem requires very 

fine grid in a zone of large magnetic field gradients. Therefore, a refined grid (Fig. 2) was 

used for simulations. We also assume that computational errors are acceptable if the distance 

between the dipole and the top surface of the moving bar h equals the doubled characteristic 

size of the element. The computational grid was further refined for very small h≈810
-2

. The 

maximal number of elements in the grid was around 10
5
. 
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2. Results and Discussion 

 

The numerical results for the moving bar are compared to the analytically obtained 

Lorentz force Fx
0
(h) for the translating infinite plate of identical thickness, where the dipole is 

vertically oriented [5]: 
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 For this case, the magnetic moment components are [0,0,1] in our non-dimensional 

representation.  We consider three different orientations [1,0,0], [0,1,0] and [0,0,1]. Fig. 3 and 

  
a) b) c) 

Fig. 5. Contours of non-dimensional current density magnitudes and current density vectors 

on the top surface of the bar for different orientations of the magnetic dipole: a) [1,0,0], 

b) [0,1,0], c) [0,0,1]. Only central part of the top surface is shown 

     
Fig. 3. The ratio of rectangular cross-

section bar and infinite plate x force 

components acting on the magnetic dipole 

which is placed in the middle above the 

top surface for different dipole orientations 

Fig. 4. Non-dimensional x force 

component acting on the magnetic dipole 

which is placed in the middle above the 

top surface for different dipole 

orientations 
 

Tab. 1. Selected values of the Fx/Fx
0
 curve for [0,0,1] oriented dipole 

h 0.08 0.20 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 4.00 

Fx/Fx
0
 1.00 0.98 0.91 0.65 0.42 0.28 0.19 0.13 0.10 0.07 0.04 
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Tab. 1 present the ratio Fx/Fx
0 

and 

Fig. 4 the non-dimensional force 

Fx .The force ratio curve Fx/Fx
0
 is 

decreasing monotonously when h 

is increased as expected. When h 

tends to zero, i.e. the magnetic 

dipole approaches the top surface 

of the bar, the curve reaches unity 

for the vertically oriented 

magnetic dipole. This result 

conforms to expectations because 

the rectangular bar acts on the 

dipole exactly as the infinite plate 

if the dipole approaches its 

surface. If the dipole is moved to a 

new position away from the bar 

then the force ratio starts to decay 

until it reaches very small values 

because the “useful” volume under the influence of the magnetic dipole field decreases for the 

rectangular bar when compared with the infinite plate. The part of the curve for h > 2 can be 

approximated by a power law. A fit to the data provides Fx/Fx
0
 = 0.76 h

-2
. The same power 

law approximation for Fx (Fig. 4) gives Fx ~ h
-3

 for small h and Fx ~ h
-5

 for large hEquation 

(2.1) provides the estimate Fx
0
 ~ h

-4
  for the infinite plate, i.e. the Lorentz force decays faster 

for moving solid bar than for infinite plate. 

 The other orientations of the magnetic dipole aligned with the coordinate system axes 

provide smaller values of the Lorentz forces comparing to the infinite plate. The Lorentz force 

on a dipole oriented in y direction is approximately ¼ part of the force for vertically oriented 

dipole because the magnetic field intensity is twice smaller and Fx~B
2
. If the dipole is oriented 

in x direction, then the force can reach 75% of the value obtained for vertically oriented 

dipole. This can be explained by the current density distribution in the bar (Fig. 5). It can be 

seen that the current density magnitude for [1,0,0] oriented dipole is higher than for [0,1,0] 

oriented dipole and the current density maximum is better localized in the region of the 

highest magnetic field intensity for [1,0,0] oriented dipole. 

 It is often required to increase the sensitivity of the LFV and the simplest way to make 

it is to symmetrically introduce a second magnet from the other side (assuming that we cannot 

decrease h or increase m) which in our case is represented as the second magnetic dipole with 

the same magnetic moment magnitude and the distance from the bar's closest surface. Both 

dipoles have no shift in y direction and their magnetic moments are collinear to z axis.  

 The numerical solution shows (Fig. 6) that the only one way to increase the Lorentz 

force is to place the both dipoles unidirectionally. It can be seen that for small h values the 

magnetic field of each dipole is localized at the closest surface, i.e. both magnetic dipoles 

work independently and we simply find a doubling of the force. With increasing h, the 

magnetic field is less localized and the Lorentz force increases if the dipoles have 

unidirectional orientation or decays if the orientation is opposite. It is expected that the 

addition of the second magnetic dipole will introduce four times greater Lorentz force for 

large h. This tendency can be clearly seen in Fig. 6. 

 
 

 
Fig. 6. The ratio between the force acting on two 

dipoles and the force acting on one magnetic dipole 
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Conclusions 

 

 The kinematic problem of a translating solid conducting body under the influence of a 

magnetic dipole has been investigated, where the dipole is located in the lateral mid-plane of 

the bar. The results show that the maximal Lorentz force can be obtained for the magnetic 

dipole oriented in the vertical direction. The force depends on the distance h between dipole 

and bar. It is given by power laws when the distance h is small or large compared with the 

width of the bar. For small distances, the power law is identical to the case of an infinite plate. 

At large distance, the power law for the bar shows a more rapid decay than for the infinite 

plate. The proposed computational method can be applied to cylindrical solid body translation 

and to investigation of the kinematic problem of a laminar conducting flow. 
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