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Abstract 

 

 In the paper we construct exact analytical three-dimensional solution for transient heat 

transfer in a double-fin assembly with two fines attached on either sides of an isolated wall. 

Heat exchange takes place at non-homogeneous environment. 

 

Introduction 

 

Extended surface is used specially to enhance the heat transfer between a solid and 

surrounding medium. Such an extended surface is termed a fin. The rate of heat transfer is 

directly proportional to the extent of the wall surface, the heat transfer coefficient and to the 

temperature difference between solid and the surrounding medium. Finned surfaces are widely 

used in many applications such as air conditioners, aircrafts, chemical processing plants, etc. 

Finned surfaces are also used in cooling electronic components. 

In [1] is considered performance of a heat exchanger consisting of rectangular fins 

attached to both sides of plane wall. In [1] work one-dimensional steady-state double-fin 

assembly problem is compared with the single-fin assembly. In paper [2] mathematical three-

dimensional formulation of transient problem for one element with one rectangular fin is 

examined, reduce it by conservative averaging method [3] to the system of three heat 

equations. Such transient problem for heat equation is interesting for intensive steel quenching 

[4]. 

 

1. Mathematical Formulation of 3-D Problem 

 

 In this part we will consider full mathematical 

three-dimensional formulation of transient problem for 

one element of system with two rectangular fins. We 

will use following dimensionless arguments, parameters 
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Fig. 1. One element of system with 

two rectangular fins 
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We have introduced following dimensional thermal and geometrical parameters: 

10 ,, kkk - heat conductivity coefficients for the wall, right fin and left fin, )( 0hh - heat exchange 

coefficient for the fin (wall), 2B – fin width (thickness), L  – right fin length, 1L – left fin 

length, D- thickness of the wall, W    walls’ width (length), 2R  – distance between two fins 

(fin spacing). Further,  tzyx ,,.0

~

  is the surrounding (environment) temperature on the left 

(hot) side (the heat source side) of the wall,  tzyx ,,,
~

  - the surrounding temperature on the 

right (cold - the heat sink side) of the wall and the fin. Finally, 

 tzyxV ,,,0

~

,  tzyxV ,,,
~

,  tzyxV ,,,
~

1  are the dimensional temperatures in the wall, right fin and 

left fin where ( )a bT T  are integral averaged environment temperatures over appropriate edges. 

The one element of the wall (base) is placed in the domain       wzyx ,0,1,0,,0   . The 

rectangular right fin in dimensionless arguments occupies the 

domain       wzbylx ,0,,0,,   . The rectangular left fin in dimensionless arguments 

occupies the domain       wzbylx ,0,,0,0,1  . 

We describe the temperature field by functions  , , ,V x y z t


,  tzyxV ,,,0



,  tzyxV ,,,1



 in the 

wall and fins 
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We assume heat fluxes from the flank surfaces (edges) and from the top and the bottom 

edges 
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Such type of boundary conditions (BC) allows us to make the exact reducing of this 

three-dimensional problem to two-dimensional problem by conservative averaging method [3]. 

Realizing the integration of main equation by usage of the BC (1) we obtain 
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We add to main partial differential equations (2) needed BC as follow 
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We assume them as ideal thermal contact between wall and fins- there is no contact 

resistance 
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We have following BC for the right fin 
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We have following BC for the left fin 
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Finally, we must add initial conditions for the heat equations (2) 
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2. Exact Solution of the Simplified 2-D Problem  
 

We would like to explain the main idea of solution for the 2-D case of periodical 

system with constant dimensionless environmental temperatures  0 01 bT     

and 0( )aT    . We neglect additionally the heat fluxes from flank edges. In this particular 

case we have       0,,,,,, 10  tyxQtyxQtyxQ  in (2). We consider  tyxU ,,  is the 

temperature of the right fin,  tyxU ,,0  temperature of the wall and  tyxU ,,1  is the 

temperature of the left fin. The BC (1) is assumed to be homogeneous. Fluxes in BC (3), (6) 

and (7) are also homogeneous. Initial conditions are still standing in the form (8). 

The conjugations conditions on the line between the wall and the left fin are still 

standing in the form (4) for the functions  tyxU ,,0  and  tyxU ,,1 . The linear combination of 

the equations (4) together with first BC from (3) allow us rewrite them as following BC on the 

left hand side of the wall: 
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In the similar way using the linear combination of the equations (5) together with 

second BC from (3) we rewrite following BC on the right hand side of the wall: 
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On the assumption that the functions  tyF ,,01 ,  tyxF ,,0  are given we can represent 

solution for the wall in very well known form by the Green function: 
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Unfortunately the representation (9) is unusable as solution for the wall because of 

unknown functions  tyF ,,01 ,  tyxF ,,0 , i.e. temperature in the fins  tyxU ,,  and  tyxU ,,1 . 

That is why we will pay attention to the solution for the fins now. In the same way we can 

rewrite the conjugations conditions in the form of BC on the left side of the right rectangular 

fin: 
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Then, similar as for the wall we can represent solution for the right fin in following 

form: 
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Finally, we rewrite the conjugations conditions in the form of BC on the right side of 

the left rectangular fin: 
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So, solution for the left fin we can represent in following form: 
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The expression of the Green functions, eigenfunctions and transcendental equations for 

in (9), (10), (11) can see in [5]. 
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Using solutions (9), (10), (11) at points  ty,, ,  ty,,0 , functions  tyF ,,01 ,  tyxF ,,0 , 

 tyF ,,02 ,  tyxF ,,  and some notations we obtain system of Fredholm integral equations of 

2
nd

 kind: 
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When solved system of integral equation (12) we immediately can obtain the 

temperature distributions between fins and wall and then get solutions for (9), (10), (11). 

 

Conclusions 
 

We have constructed several exact three dimensional analytical solutions for a one 

element of periodical system with rectangular fin where the wall and the fin consist of 

materials which have different thermal properties. These solutions are in the form of Fredholm 

integral equation of 2
nd

 kind and has continuous kernel. 
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