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Abstract

We study the numerical methods for solving initial-boundary value problems of some
nonlinear heat transfer equations in polar coordinates between two infinite coaxial cylinders
(rings) with surfacesr =r,, r =R >r,. Using the method of lines the approximation in the space
of corresponding initial boundary value problems in one and two layered domain is based on
the finite-difference scheme with central difference (FDS). The original method is used for the
calculations of the circular matrices.

We study the behaviour of solutions, which simulate the burning processes, at the time
and also when t —oc depending of the parameters. In the fixed time moment the solution have
"blow up" phenomena — the solution tends to infinity in a small interval or in all domains by a
fixed time moment

1. The Mathematical Model

A large number of papers in the time period of 1970 -1990 are devoted to blow-up
phenomena in quasilinear parabolic equations [1]. In this paper the 1D initial - boundary
problem for nonlinear PDEs in the polar coordinates with radial symmetry of blow-up regimes

au(rt) _ o [, au(rn)” . 11
- rar(ﬂrar j+a(u(r,t)) ,refr,Rjt>0, (1.1)

by ¢>0,4>0,1>0,a>0 and with conditions u(r,,t)=u(R,t)=0, u(r,0)=u,(r)>0 is

considered. We study the behaviour of solutions (1.1) at the time and also when t—oc,
depending on the parameters o,f,4,a. The corresponding linear transfer problems are

considered in [2], [3]. In [4] are solved the equation (1.1) in one layer of Cartesian coordinates.
Let the cylindrical domain {(r,4,2):r, <r <R,0< ¢ <27,— o< z <o} contain thermal

conducting material, where r,,R are the radiuses of the coaxial cylinders. The surfaces of these
cylinders are with constant temperature u=0. The 2D domain (r,¢) with thickness | =R —r;
is multilayer media Q of N layers Q:{(r,¢): rer,kzﬁ,os¢32;z} where each layer is in
the form Q, ={(r,¢):r,_, <r<r,0<g<2z}r; =R.

In the 2D case we shall consider the initial - boundary value problem for solving the
temperature u =u(r,¢,t) >0 from the following nonlinear heat transfer PDEs:

% — AA(UTY) +au’, re(r,R), € [0.27]t >0, (1.2)
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where in every layer A >0 is the piece-wise constants coefficient of heat conductivity, a >0 is
the constant parameter, A is Laplace operator A*=r8(rd*/or)/ or + r 262 */ do¢p® .

If the initial condition u(r,¢,0)=u,(r) depends only on r then the solution u(r,t) is
with the radial symmetry (1.1).
In every layer Q, the function u and A are in the form u,, 4 ,k=1N.

We have the continuity conditions on the interior surfaces r=r,, r=r,k=1,N -1 :
u, (r,o,t) =u,.,(r,41), Lou(r,ét)/or=2.0u,,(r ¢t)/or and boundary conditions on
the exterior surfaces r=r,r=r, =R: u(r,4t)=ug(R,¢t)=0. For the initial condition by

t=0we give u,(r,¢,0)=U,,(r,¢), k=1N, where u,, (r,¢)>0 is continuous function in every
layer.

2. Some Theoretical Aspects in One and Two Layers by Radial Symmetry
In one layer similarly [1] we consider the following spectral problem

Ad(roy1or)lor +ruy =0, (r,) =w(R) =0, where u are the eigenvalues.

The solution of this problem is in the form:y, (r)=Y,(b.r)-rJ,([Or),
7 =Y, (b)) (b)), k=2123,..., where b, =\/m, J,.Y, are the Bessel functions for zero
order of the first and the second kind. The eigenvalues g, satisfy following transcendental
equations: J,(b.r,)Y,(b.R) —J,(B,R)Y,(b.r,) =0.

From the norm of the first eigenfunction w, (r) =y, (r)/1,, IO:IRrwl(r)dr follows that
o
IRer(r)drzl. Multiplying the equation (1.1) with function ry;(r) and integrating it by
parts twice we get dE /dt =a(y;,u”) — s (w;,u*™), where (], f)=IRrwf(r)f(u(r,t))dr,
o

EQ) = [ ryZ(u(r,dr 20, if u(r,) 20, Ey = E(0) = [ ry; (nu,(r)dr 0.

Similarly [1] we can proved that by B>o+1, w©EJ™ <aE/ the solution u(r,t)>0 is

unbounded in the time and exist finite value of T, when maxu(r,t) > if t > T,
(a "blow up” phenomena), where

T.=E,"(aEl " — 1) (B 1) <. (2.1)
If f=0+1 and g <a then the fixed time moment is
T.=(ola- ) 'EQ) (2.2)

If < o+1 then the solution is bounded for finite value of t <oc.
Similarly for two layers (N =2, =H,r, =R), we consider the following spectral problem
A0(rdy 1ar)1or + ruy =0, (r,) =w?(R) =0, where
w(r)= {V’l(r) (r<r<H)y*((H<r< R)},/?, = ALy (H) =y?(H),
A0y (H)/or = ,0w*(H)/or . The solution of this problem is in the form:
v () = 7 Yo (1) 3o (Br) ~ Yo (BN 3o (B)), w72 (1) =Yo(BR)Io(B77) — Yo (b2r) I (B7R)

170



_ . ) Y, (b2R)J, (b2H) - Y, (b2R)J, (bZR)
k—1,2,3,..., h = , = ) =0 % 017k 017k 01~k .
WRETE B = a2 D= B 7=y 03 (00 H) Yo (BEH) 3o (0l1,)

The eigenvalues , satisfy following transcendental equations

A (Yo (0ER) I, (B H) = Yo (7H) 3o (B R)) (Yo (B 15) 3; (0 H) = Yy (b H) 3, (b 1) —

= 250 (Vo (B15) o (B H) = Yo (B H) 3o (B ) (Yo (B¢ R) I, (b H) = Y, (b7 H) I (b7R) = 0

where J,,Y, are the Bessel functions for first order of the first and the second kind. From the
1x 1

norm of the first eigenfunction w; (r) =w,(r)/1,, v, = {yxl ;z//f*}, W, = {yfl;t//f},
R H R
I, = _[ro ry, (r)dr :jro ry, (r)dr +jH ryZ(r)dr,

follows that IR ry; (r)dr =jHrwj*(r)dr + j:ry/f*(r)dr =1.
o o

(2.3)

Multiplying the equation (1.1) by function ry;(r) and integrating it by parts twice both
integrals we obtain the expressions (2.1, 2.2).

3. Methods of Lines and FDS for the One and Two Layers

For numerical calculation in the one layered domain (4, =A,u =u) we consider

uniform grid with additional grid points(rk =kh+r,k :O,_N, Nh = R—ro). We consider two

cases: the 1D problem with radial symmetry and the 2D problem in the space. For solving the
equation (1.2) with radial symmetry we use the method of lines to reduce the nonlinear heat
transfer problem to initial value problem for system of nonlinear ODEs of the first order. For
the 2D problem we obtain the stationary solutions using the vector finite difference scheme
with circulant matrix.

In the 1D case from (1.2) we can be directly obtain the system of nonlinear ODEs with the
second order of approximation in the space in the following matrix form

U =(4/h?)AG +F, 3.1)
where A is the standard 3-diagonal matrix of N —1 order with the non zero elements
8 =2, &y = (h0)/ T, Ay, =(r_o5)/t, G,F,U are the column-vectors of N —1 order
with elements g, = (u(x,,t))°", f, =a(u(x,,t))”, U, =u(x,t).

In the 2D case using the transformation V (t,r,¢) = u”"(t,r,#) and the method of stationarity in
the equation (1.2) we approximate the derivative oV /ot by the difference (v, ,(r,4) -V, (r,¢))/z,

where i1 =0,1,...,1, 7 is the parameter of iterations.
The number of iterations | is determined from following conditions:\v,,,(r,¢) -V, (r.¢)| <¢,

where ¢ is the desirable precision. We can rewrite for the each iteration the heat transfer
problem in the following form

{(vm(r,qﬁ) —V,(r,4))l 7 = AAV, ,(r,4) +a(V,(r,$))%,i=01,..1, ’ (3.2)
Vo(r, @) =Uy(r,4). Vi(r,9) =Vi(R,$) =0,V,(r,¢ + 27) =V;(R,$)

where a = B/(o +1), the function u,(r,¢) =V, (r,4) is the initial condition for the iterations.
We consider an uniform grid:a, ={(r.¢,), f, =1, +kh,¢, = jh, |, k=0N, j=1M, r,+Nh=R,
Mh, =27 . The equation (3.2) in the grid points (r,4;) is replaced by vector difference
equations of second order approximation in 5-point stencil:

171



AViik1—CViak BV t R =0, Vi, o =V =0, (3.3)

where Vi Fix are column-vectors with components Vie =Vi(h.4;),

fi=alVi ) +vy /e, k=LN-1j=LM, A,B,,C, are the circulant symmetrical matrices
with M-order: A =[a,,0,0,..,0], B, =[b,0,0..0], C, =lc,¢,.00..0¢,], where
Q= rk—0.5/rkh2 ! bk,l = rk+0.5/rkh2 1 G2=Cm = _(rkzh;)_l’ Ci =+ bk,l - 2Ck,2 +77.

Using special arithmetical operations with circulant matrices the finite vector difference
scheme (3.3) is solved by the Gauss elimination method.

Similarly we consider the two layered domain (©,,Q,,4, # 4,) and uniform grid in every
layer with grid points (rk =kh+r,k=0,N,Nh=R—r,Kh+r,=H=r, <R= rz).
In the 1D case we obtain the system of nonlinear ODEs in the following matrix form

(3.1), where A is the block matrix of N —1 order with two blocks of 3-diagonal matrix form of
K —1and N —K orders.

In the 2D case similarly (3.2) follows the heat transfer problem in iterations form

(Vim(r.0) V" (r,9))l T = 2,8V, (1, 6) + Ay, (r,#)", i =0.L,.., |
V" (1,8) = Uy (1, 9), Vi (15, 8) =V (R, $) = 0,V," (1, ¢ + 27) =V," (R, ) » (34)
Vl(H ) :VZ(H ), A&Vl(H @)/ or = ﬂzaVZ(H @)/ or

where V*,V? are corresponding the solutions in the domains Q,,Q,, m=1,2. The heat transfer
equation (3.4) in the uniform grid (r,,¢;) can be rewritten in the matrix-vector form (3.3).

4. Some Examples and Numerical Results

The numerical experiment for the linear equation (1.2) with =0, f =sin(¢),a=3,
2,=1;100, 4, =1 and uy(r,¢)=(R-r)Xr—r,)>0, R=1, r,=0.2, H =0.6 is compared with the
following stationary analytical solution u(r,g)=Cir+Cyr—r?/2,
u,(r,¢) =C,r +C,r* —r?/ 4,, where C,.C,.C,,C, are constants.

For the radial symmetry case is used also nonlinear test with g =0. The stationary solution is in

the form: u(r)= (Clln r+C, —0.25ar2/11)”, u,(r) = (Csln r+C, —0.25ar2//11)”, where
a=(o+1)". The numerical results are agreed with 4 decimal signs with respect to analytical
solutions. From the numerical results follows that the minimal value of error isby N =M and
further the calculations are produced by different value of &, and N =M =80, s=10".
We can obtain the four type solutions (radial symmetry) depending on the parameters «, f,a
and with 4, =100, 4, =1, g =59.2001, 4 =1, 4, =100, g4 =58.9950 ('in two layers):

1) o =3, =5,a =y the stationary solution u(r) is zero,

2) o =3, =4,a=u, the solution uy(r) #0 if t > T, <o,

o=3=4,a=60a> 1,u(r,t) > globally for all r when t—>T, <c for
T. =268.9988 (theoretical value T, =293.8056).

4) o =3,8=5a=500, u(r,t) > locally, when t - T, <ec for T, =32.44096 of point
r=0.75 if 4, =100, 4, =1 and for T, =14.46177 of point r=0.25 if 4 =1, 4, =100 (Fig. 1., 2.).
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(theoretical value) by a =120

Tab. 1. The values of T, (numerical value) and T,,
L=A=1 A4,=100,4, =1
6 ﬂ T* T** Q T* T** Q
1 2 0.06822 | 0.0729 8.2405 0.13804 | 0.1464 2.0270
1 3 0.70117 | 306554 1.0722 u, =0 u,=0 0.2277
2 3 0.23933 | 0.2801 8.2405 0.57820 | 0.6514 2.0270
3 4 1.09944 | 1.4354 8.2405 3.1775 3.8654 2.0270
4 5 5.61870 | 8.2744 8.2405 19.3153 | 25.8023 | 2.0270
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Fig. 1. Solution u —oc for Fig. 2. Solution u —soc for
=0.75,8=50=3a=500,4 =100,4, =1 ' < *
' p=50=3a=304=1004 =1 7 s 55 c=3a=5004 =11 =100

41H|l|l|||{l|mb‘

Fig. 3. 2D solution uy =0 f=4, c=3, o 4 2p solution u,#0 f=4, 0=3,
2=y =59.2001, 4, =100, 4, =1 a= 4, =58.9950, 4, =1, 4, =100

If f<o+1, then for all a>0 we have by t—T, < the stationary solution u(r)
If p=o+1,then forall a<,u,(r)=0.If a=4, then the convergence to stationary solution

is very fast in the time. If a> g, then the solutions is unbounded in the time t>T, in all
interval r e (r,,R) (T,is finite value, see the theoretical estimation (2.2)).
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If g>o+1, then we have "blow up" phenomena by sufficient large value of E(0) or a, when
the solution tends to infinity locally in small neighbourhood of interior point in segment [r,,R].
From the theoretical estimation Q =aE(0)”°'/ x4 >1 follows that the solution is unbounded in
the time t>T, <oc, where T, =E;7(aE/“ " — 1) /(B -1). The behaviour of the solution for
o +1< f we can see in the table 1 (T, is numerical value, T,, is theoretical value).

For the 2D case (ﬂ=4,o—=3,a=ﬂl) the stationary solution is independent on the azimuthal

coordinate ¢ (Fig. 3. 4.). These pictures are obtained by 1=0.01; 0.001; 0.0005 and 1=20; 40;
70.

5. Conclusions

The nonlinear heat transfer problem is approximated with the nonlinear initial value
problems of a system of ODEs of the first order. Depending on the parameters two types of
solutions are obtained:

1) for large value of the time t the solution is stationary or tends to zero;
2) in the fixed time moment the solution have blow up phenomena — the solution tends to
infinity in a small interval or in all domain by a fixed time moment.
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