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Abstract 

 

We study the numerical methods for solving initial-boundary value problems of some 

nonlinear heat transfer equations in polar coordinates between two infinite coaxial cylinders 

(rings) with surfaces
00, rRrrr  . Using the method of lines the approximation in the space 

of corresponding initial boundary value problems in one and two layered domain is based on 

the finite-difference scheme with central difference (FDS). The original method is used for the 

calculations of the circular matrices. 

We study the behaviour of solutions, which simulate the burning processes, at the time 

and also when t  depending of the parameters. In the fixed time moment the solution have 

"blow up" phenomena – the solution tends to infinity in a small interval or in all domains by a 

fixed time moment 

 

1. The Mathematical Model 

 

A large number of papers in the time period of 1970 -1990 are devoted to blow-up 

phenomena in quasilinear parabolic equations [1]. In this paper the 1D initial - boundary 

problem for nonlinear PDEs in the polar coordinates with radial symmetry of blow-up regimes  
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by 0,0,0,0  a  and with conditions ,0),(),( 0  tRutru 0)()0,( 0  ruru  is 

considered. We study the behaviour of solutions (1.1) at the time and also when t , 

depending on the parameters a,,,  . The corresponding linear transfer problems are 

considered in [2], [3]. In [4] are solved the equation (1.1) in one layer of Cartesian coordinates.  

Let the cylindrical domain    zRrrzr ,20,:,, 0   contain thermal 

conducting material, where Rr ,0  are the radiuses of the coaxial cylinders. The surfaces of these 

cylinders are with constant temperature 0u . The 2D domain (r, ) with thickness 0rRl   

is multilayer media   of N  layers    20,,1,:,  Nkrr k
 where each layer is in 

the form    Rrrrrr
Nkkk   ,20,:, 1  . 

In the 2D case we shall consider the initial - boundary value problem for solving the 

temperature 0),,(  truu   from the following nonlinear heat transfer PDEs: 
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where in every layer 0  is the piece-wise constants coefficient of heat conductivity, 0a  is 

the constant parameter,    is Laplace operator   2221 /*//**   rrrrr . 

If the initial condition   )(0,, 0 ruru   depends only on r  then the solution  tru ,  is 

with the radial symmetry (1.1). 

In every layer k  the function u  and   are in the form Nku kk ,1,,  . 

We have the continuity conditions on the interior surfaces ,krr   1,1,  Nkrr k : 

 rtrurtrutrutru kkkkkkkkkk   /),,(/),,(),,,(),,( 111   and boundary conditions on 

the exterior surfaces Rrrrr
N
 ,0

: 0),,(),,( 01  tRutru
N

 . For the initial condition by 

0t we give Nkruru kk ,1),,()0,,( ,0   , where 0),(,0 ru k
 is continuous function in every 

layer. 

 

2. Some Theoretical Aspects in One and Two Layers by Radial Symmetry 

 

In one layer similarly [1] we consider the following spectral problem 

  0)()(,0// 0  Rrrrrr  , where   are the eigenvalues. 

The solution of this problem is in the form: )()()( 00 rbJrbYr kkkk   , 

...,3,2,1),(/)( 0000  krbJrbY kkk , where  /kkb  , 00,YJ  are the Bessel functions for zero 

order of the first and the second kind. The eigenvalues k  satisfy following transcendental 

equations: 0)()()()( 000000  rbYRbJRbYrbJ kkkk . 

From the norm of the first eigenfunction 
R
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1)(1 . Multiplying the equation (1.1) with function )(1 rr   and integrating it by 

parts twice we get ),(),(/ 1
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Similarly [1] we can proved that by 1 ,  0

1

01 aEE   the solution 0),( tru  is 

unbounded in the time and exist finite value of T  when ),(max tru  if Tt   

 (a "blow up" phenomena), where   
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If 1  and a1  then the fixed time moment is  

    
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1

1 EaT          (2.2)  

If 1  then the solution is bounded for finite value of  t .  

Similarly for two layers ( RrHrN  21 ,,2 ), we consider the following spectral problem 
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...,3,2,1k , where 
1
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The eigenvalues k  satisfy following transcendental equations 
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where 11,YJ  are the Bessel functions for first order of the first and the second kind. From the 

norm of the first eigenfunction 011 /)()( Irr   ,    2
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Multiplying the equation (1.1) by function )(1 rr   and integrating it by parts twice both 

integrals we obtain the expressions (2.1, 2.2). 

 

3. Methods of Lines and FDS for the One and Two Layers 

 

For numerical calculation in the one layered domain  uukk  ,  we consider 

uniform grid with additional grid points  00 ,,0, rRNhNkrkhrk  . We consider two 

cases: the 1D problem with radial symmetry and the 2D problem in the space. For solving the 

equation (1.2) with radial symmetry  we use the method of lines to reduce the nonlinear heat 

transfer problem to initial value problem for system of nonlinear ODEs of the first order. For 

the 2D problem we obtain the stationary solutions using the vector finite difference scheme 

with circulant matrix. 

In the 1D case from (1.2) we can be directly obtain the system of nonlinear ODEs with the 

second order of approximation in the space in the following matrix form  

 

  FAGhU  2/ ,         (3.1) 

where A  is the standard 3-diagonal matrix of 1N  order with the non zero elements 

2, kka ,   kkkk rra /5.01,   ,   kkkk rra /5.0,1   , UFG ,,  are the column-vectors of 1N  order 

with elements 1)),((  txug kk , )),(( txuaf kk  ,   ).,( txuu kk
   

In the 2D case using the transformation ),,(),,( 1   rturtV   and the method of stationarity in 

the equation (1.2) we approximate the derivative tV  /  by the difference    /),(),(1 rVrV ii 
, 

where Ii ...,,1,0 ,   is the parameter of iterations. 

The number of iterations I  is determined from following conditions:   ),(),(1 rVrV II
, 

where   is the desirable precision. We can rewrite for the each iteration the heat transfer 

problem in the following form 
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where  1/   , the function ),(),( 00  rVru   is the initial condition for the iterations. 

We consider an uniform grid   jhkhrrr jkjkh  ,),,(: 0
, Nk ,0 , Mj ,1 , RNhr 0

, 

 2Mh . The equation (3.2) in the grid points ),( jkr   is replaced by vector difference 

equations of second order approximation in 5-point stencil: 
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0,1,1,11,1   kikikkikkik FVBVCVA , ,0,10,1   Nii VV     (3.3) 

where kiki FV ,, ,  are column-vectors with components ),(,, jkijki rVv  , 

MjNkvvaf jkijkijki ,1,1,1,/)( ,,,,,,   , kkk CBA ,,  are the circulant symmetrical matrices 

with M-order:  0...,,0,0,1,kk aA  ,  0...,,0,0,1,kk bB  ,  2,2,1, ,0...,,0,0,, kkkk cccC  , where 

2

5.01, / hrra kkk  , 2

5.01, / hrrb kkk  , 122

,2, )(  hrcc kMkk
, 1

2,1,1,1, 2  kkkk cbac . 

Using special arithmetical operations with circulant matrices the finite vector difference 

scheme (3.3) is solved by the Gauss elimination method. 

Similarly we consider the two layered domain  2121 ,,    and uniform grid in every 

layer with grid points  21000 ,,,0, rRrHrKhrRNhNkrkhrk  . 

In the 1D case we obtain the system of nonlinear ODEs in the following matrix form 

(3.1), where A  is the block matrix of 1N  order with two blocks of 3-diagonal matrix form of 

K −1 and N −K orders.  

In the 2D case similarly (3.2) follows the heat transfer problem in iterations form  
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where 21,VV  are corresponding the solutions in the domains 2,1,, 21  m . The heat transfer 

equation (3.4) in the uniform grid ),( jkr   can be rewritten in the matrix-vector form (3.3). 

 

4. Some Examples and Numerical Results 
 

The numerical experiment for the linear equation (1.2) with 0 , )sin(f , 3a , 

100;11  , 12   and    0),( 00  rrrRru  , 1R , 2.00 r , 6.0H  is compared with the 

following stationary analytical solution 
1

21

211 /),(  rrCrCru   , 

2

21

432 /),(  rrCrCru   , where 
4321 ,,, CCCC  are constants.  

For the radial symmetry case is used also nonlinear test with 0 . The stationary solution is in 

the form:  1

2

211 /25.0ln)( arCrCru  ,  1

2

432 /25.0ln)( arCrCru  , where 

  1
1


  . The numerical results are agreed with 4 decimal signs with respect to analytical 

solutions. From the numerical results follows that the minimal value of error is by MN   and 

further the calculations are produced by different value of  ,  and 410,80  MN . 

We can obtain the four type solutions (radial symmetry) depending on the parameters a,,  

and with 1001  , 12  , 2001.591  , 11  , 1002  , 9950.581   ( in two layers): 

1,5,3)1   a  the stationary solution )(rust  is zero, 

1,4,3)2   a , the solution 0)( rust  if  stTt , 

1,60,4,3)3   aa , ),( tru  globally for all r  when  Tt  for 

9988.268T  (theoretical value 8056.293T ). 

500,5,3)4  a , ),( tru  locally, when  Tt  for 44096.32T  of point 

75.0r  if 1001  , 12   and for 46177.14T  of point 25.0r  if 11  , 1002   (Fig. 1., 2.). 
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Tab. 1. The values of T  (numerical value) and T  (theoretical value) by 120a  

121    1,100 21    

    
T  T  Q  

T  T  Q  

1 2 0.06822 0.0729 8.2405 0.13804 0.1464 2.0270 

1 3 0.70117 306554 1.0722 0stu  0stu  0.2277 

2 3 0.23933 0.2801 8.2405 0.57820 0.6514 2.0270 

3 4 1.09944 1.4354 8.2405 3.1775 3.8654 2.0270 

4 5 5.61870 8.2744 8.2405 19.3153 25.8023 2.0270 

 

 

 
 

Fig. 1. Solution u  for 

1,100,500,3,5,75.0 21   ar  

 

 
 

Fig. 2. Solution u  for 

100,1,500,3,5,25.0 21   ar  

 

 
 

Fig. 3. 2D solution 0stu  4 , 3 , 

2001.591  a , 1001  , 12   

 

 

 
 

Fig. 4. 2D solution 0stu  4 , 3 , 

9950.581  a , 11  , 1002   

 

 If 1 , then for all 0a  we have by  stTt  the stationary solution )(rust
                 

If 1 , then for all 0)(,1  rua st . If 
1a , then the convergence to stationary solution 

is very fast in the time. If a > 1 , then the solutions is unbounded in the time  Tt  in all 

interval ),( 0 Rrr  ( T is finite value, see the theoretical estimation (2.2)). 
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If 1 , then we have "blow up" phenomena by sufficient large value of )0(E  or a , when 

the solution tends to infinity locally in small neighbourhood of interior point in segment  Rr ,0 . 

From the theoretical estimation 1/)0( 1

1   aEQ  follows that the solution is unbounded in 

the time  Tt , where )1/()( 1

1

1

00  

  aEET . The behaviour of the solution for 

 1  we can see in the table 1 ( T  is numerical value, T  is theoretical value).  

For the 2D case  1,3,4   a  the stationary solution is independent on the azimuthal 

coordinate   (Fig. 3. 4.). These pictures are obtained by τ=0.01; 0.001; 0.0005 and I=20; 40; 

70. 

 

5. Conclusions 
 

The nonlinear heat transfer problem is approximated with the nonlinear initial value 

problems of a system of ODEs of the first order. Depending on the parameters two types of 

solutions are obtained: 

1) for large value of the time t  the solution is stationary or tends to zero;  

2) in the fixed time moment the solution have blow up phenomena – the solution tends to 

infinity in a small interval or in all domain by a fixed time moment. 
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