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Abstract 

 

 The interaction between ferromagnetic particles plays the main role in behaviour of a 

magnetorhelogical suspension (MRS). The present paper describes dipole approximation 

limits for magnetic forces between spherical particles in 2D axisymmetric case. Nonlinear 

magnetization of particles is described by Froelich-Kennely law.  

 

Introduction 

 

 Magnetorheological suspensions are used in many devices where controllable friction 

is needed. Optimisation of devices with MRS requires correct description of the magnetic 

interaction force between ferromagnetic particles, usually spherical ones. A natural choice 

would be to use dipolar interaction model, regretfully close particles behave differently from 

point-dipoles. In this case finite element approach provides numerical values of a magnetic 

force, taking into account nonlinear magnetization of the ferromagnetic material. Here attempt 

is made to estimate limits of validity of point-like dipole approximation for magnetisable 

spheres. The dipolar approximation is realized via “Lonely sphere” model which corresponds 

to single sphere in an external homogeneous magnetic field with constant magnetization. Such 

a sphere mathematically is equivalent to point like dipole placed in the centre of sphere with 

the same dipolar moment as the original sphere.  

 

F12

F21

1

B0

2

q

x

z

 
 

 

q

B0

 

Fig. 1. Magnetic interaction of two 

particles 

 Fig. 2. Affine shear of chain 
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 One of the main outcomes of simple models is the estimation of yield stress value 

[1,2], providing important macroscopic property of MRS. 

 

1. The Magnetic Force Between Spheres 

 

 The magnetic force between dipoles (Fig.1.) is different from the electric forces 

between electric charges because it is not “central force”. The value and direction of force is 

given by formula: 
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Here 1212 rrR


  is distance vector between the second and the first sphere (Fig.1.), 1m


, 2m


  

are dipole vectors of spheres, 
0 is magnetic constant. 

 So called “Lonely sphere” model describes single sphere placed in an external 

magnetic field 0B


. Magnetization of a single sphere is  
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Since magnetic permeability  H   is function of magnetic field, use of (1.2) is not easy. 

Solving relation  
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as equation for magnetic permeability together with Froelich-Kennely law [3] 
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provides magnetic field intensity inside the sphere: 
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  (1.5) 

Now we can calculate magnetic moment of the magnetized sphere with radius 0R  placed in an 

external field 0B


and using formulae (1.2), (1.5)  
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2. Estimation of the Yield Stress 

 

 The value of the yield stress is calculated by simple model of the chain exposed to 

affine shear (see Fig.2). The aim is to find the maximal value of the “tangential force” which 

acts 6n the half of the chain. The value of the force is taken from FEM calculations at given   
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 dBFFX ,sin 0q . 

 The value of the yield stress 

for given volume fraction   of 

particles is calculated by 
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Volume fraction is related to unit cell (Fig.3.) volume V and upper surface area S  as 
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3. Finite Element Method 

 

 Finite element calculations are carried out using azimuthal component of vector 

potential, all details are given in [4]. Equation to solve is elliptic second order differential 

equation: 
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Boundary conditions are 0
0


r

A  on axis ( 0r ), 0




z

A
 on symmetry boundaries 

( constz  ) and 
2

0 rB
A   on “far” boundary. 

 

4. Results 

 

 Comparison of FEM calculated force values and dipolar approximation ones (using 

Lonely sphere model) are shown on Fig.4. FEM calculations were carried out using 1
st
 and 2

nd
 

order element. Values 
dipf

stf

_

1_
(ration of FEM 1st order element force versus dipolar one) and 

dipf

ndf

_

2_
(ration of FEM 2nd order element force versus dipolar one) are plotted for there 

values 10;1;1.00 B .  It is evident that for 5
0


R

d  FEM provide reliable results which are 

generally quite different from dipolar approximation. Increase of the distance between 

particles leads to less accurate FEM calculated values, for 10
0


R

d  1
st
 order elements are not 

accurate enough. General recommendation is to use dipolar approximation for distances larger 

that 5 sphere radiuses. 
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Fig. 4. Ratio of FEM calculated versus dipolar approximation force 
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Fig. 5. Rupture force 

 

 In Fig.5. so called non-dimensional rupture force, related to yield stress is plotted 

versus 0B . Curves with markers correspond to FEM 2
nd

 order calculations at different values 

of ini  (100, 250, 1000, 5000). Solid curves are obtained by dipolar approximation (Lonely 

sphere model). FEM and dipolar forces are provide completely different results. Just at 

saturation all curves tend to the theoretically predicted non-dimensional value 0.344. Thus it is 

obvious, that 2D axially symmetric FEM calculations provide yield stress results with 

completely different behaviour than simple dipole approximation. 



137 

0,000

0,050

0,100

0,150

0,200

0,250

0,300

0,350

0,400

0,450

0,500

0,01 0,1 1 10

B0

q
 (

ra
d

)

100

250

1000

5000

 
Fig. 6. Rupture angle 

 

On Fig.6. rupture angle (angle q  in Fig.2.) is shown. It increases with increase of 

magnetic field till the magnetization of particles reach saturation, the limiting value 

rad452.0q .  

On Fig. 7. rupture force is plotted as log-log plot indicating    5.1

0B  type behaviour 

for FEM results at small magnetic field values. Results obtained at constant magnetic 

permeability   is hard to compare with nonlinear magnetization, dependence on magnetic 

field value is like  2

0B  as it should be for a linear task due to the magnetic force scaling. 
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Fig. 7. Rupture force at constant  
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Conclusions 

 

Results confirm that 2
nd

 order finite elements provide more accurate results, especially 

for large distances between particles. FEM calculations are needed for distances between 

particles up to 5 sphere radiuses ( 05Rd  ). For larger distances numerical errors accumulate 

and accuracy of FEM calculations reduces and dipolar approximation provides better result 

with less computational effort, assuming, that “Lonely sphere” model is used. 
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