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Abstract 

 

 The present material is focused on modelling of complex system simplified heat 

exchange dynamics. Stationary solutions of chosen problem are described. Possible methods 

for heat problem solution are lined out. Chosen approach of small deviation modelling is 

explained. General conclusions about application possibilities and restrictions are given. 

 

Introduction 

 

In modelling of real life heat exchange problems, it must be taken into account that 

modern devices are very complicated (usually consisting of many parts). Correct heat 

exchange analytic description of very complicated device is inconvenient, numerical 

calculations are used instead. Stationary solutions for very complicated devices are common 

in numerical calculations. Despite the huge progress of computational power, unsteady 

numerical simulations for such complicated devices are too demanding on computational 

capability and therefore practically are not usable. 

Nevertheless there are situations when dynamic calculations of heat exchange process 

are necessary. Therefore simplified description of heat exchange should be introduced. From 

literature follows that simplified description of heat transfer in several systems has already 

been developed, see list of references [1]. Nevertheless such models can be used only for very 

simple system geometry. 

It was concluded, that in order to create simplified description of dynamic behaviour of 

complicated heat exchange system, stationary solution close to interesting heat parameter 

values can be used as a base (because correct stationary solution is not a problem in terms of 

computational power). In order to reduce error due to simplifications of physical model, only 

small deviations from stationary solution are described. 

 

1. Concept of Using Stationary Solutions and Small Deviations 

 

Because in reality used technological devices for heating, melting, welding etc are very 

complicated, the corresponding numerical simulations are quite complex. To ease the task for 

special applications only stationary simulations are carried out. In stationary solution it is 

assumed that temperature field all over the selected device is constant and heat flows remains 

also unchanged. 

After stationary calculation has been done (with any software, that is able to compute 

stationary result of heat exchange problem), various chosen device characteristic parameters 

(temperature, heat flows etc., arbitrary system parameter will be denoted as F) have been 

obtained. It can be safely assumed that computed stationary parameter value Fstat is not 

changing over time. Schematic representation is given in Fig. 1. 



54 

Fig. 2. Schematic representation of 

arbitrary parameter stationary value 
 

 
  

Fig. 1. Schematic representation of small 

deviations from parameter stationary value 
 

In reality stationary case of process is quite rare. Usually there would be deviations 

from stationary parameters even if one would try to keep system state close to stationary 

solution. The cause of this deviation can be very different, from imperfect heat power system, 

up to fluctuations introduced from system mechanical dynamics. Therefore, to model real 

situation, one must describe deviations from stationary solution parameters. Schematic 

representation of chosen parameter is shown in Fig. 2. 

In order to describe such small deviations from stationary value (Fig. 2), one must 

create a physical description. Example with arbitrary function and two arguments is shown in 

equation (1). For derivation of parameter deviation full differential expression (2) can be 

written. If any unknown parameter is left, stationary solution correspondence to physical 

description can be used, equation (3). 

2. Examples of Small Deviation from Stationary Solution Usage in Heat Transfer 

 

2.1. Heat Conduction 

In order to keep heat transfer description simple, we will consider the system for which 

two chosen objects are assumed to each have approximately constant temperature over all 

volume. In heat conduction case, thermal insulation is placed between two chosen objects. It 

also must be noted, that objects and insulation can be of any arbitrary shape. Schematic 

representation of described situation is given in Fig. 3. 

 

 

Fig. 2. Schematic representation of  heat conduction for two arbitrary shaped constant 

temperature bodies 
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It must be reminded, that for each small volume part of insulation, conducted heat flow 

density is described with Fourier law (physical laws for heat transfer can be found in list of 

references [2]). This local description is dependent both from shape of insulation and heat 

conductivity in insulation. 

It can be concluded that total transferred heat power is dependent from two object 

temperature difference, simplified expression can be written as follows (4): 

 21 TTkP  , (4) 

where coefficient k describe given situation, dependent from different heat conductivity  

values over insulation volume and also dependent from specific geometry of objects and 

insulation. Coefficient k value is not precisely known from physical description yet. 

As it was explained in section before, stationary parameter values also must follow the 

same general physical description, in this case expression (4). Therefore if one can obtain 

stationary parameter Pstat, T1,stat and T2,stat values (from numerical stationary calculations; it 

must be noted, that Pstat value is determined from integration over surface, temperature T1,stat 

and T2,stat value determination should be as average over volume; if such numerical 

determination is not possible, temperature values could be obtained with different creative 

approach), coefficient k can be derived as shown below (5 – 6): 

 statstatstat TTkP ,2,1  ;  (5) 
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If one has found the unknown coefficient k value (6), final expression for heat flow 

deviation P trough insulation can be written (for case, when heat conduction is not dependent 

from temperature, Fig. 3), derivation and result is shown below (7): 

 21

,2,1

212

2

1

1

TT
TT

P
TkTkT

T

P
T

T

P
P

statstat

stat
cond  












 , (7) 

where T1 and T2 are respective deviations in object temperatures (objects can be seen in Fig. 

3). Acquired expression (7) is a convenient way to calculate change in heat flow, if one knows 

changes in respective object temperatures. 

 

2.2. Heat Radiation 

It is assumed that the considered object has approximately constant temperature over 

its surface and that the object is placed far from other objects; therefore no radiation back 

from other objects is present. Again it also must be noted, that object can be of any arbitrary 

shape, see Fig. 4. It must be reminded, that for each small surface part of object, radiated heat 

flow density is described with Stefan-Boltzmann law. It can be concluded that total transferred 

heat is dependent from object characteristic temperature: 

4

1kTP  ,  (8) 
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where coefficient k describe given situation, dependent from specific geometry and also small 

deviations in temperature field. Coefficient k value is not precisely known from physical 

description yet. 

 

Fig. 3. Schematic representation of heat radiation for one arbitrary shaped constant 

temperature body 

 

As it was explained in section before, stationary parameter values also must follow the 

same general physical description, in this case expression (8). Therefore if one can obtain 

stationary parameter Pstat and T1,stat values (from numerical stationary calculations), coefficient 

k can be derived as shown below (9 – 10): 

4
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If one has found the unknown coefficient k value (10), expression for heat power 

deviation P radiated away from object surface can be written, derivation and result is shown 

below (11): 
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where T1 is respective deviation in object temperature (object can be seen in Fig. 4). 

Characteristic stationary temperature value in this case can be obtained form Stefan-

Boltzmann law (in order to average temperature field), relation for stationary temperature 

value and final expression for heat power radiated away from object is shown below (12 – 

13): 
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where  is emissivity of selected object surface (assumed to be constant) and S is object 

surface area. Acquired expression (13) is a convenient way to calculate change in radiated 

heat power, if one knows changes in respective object temperature. 
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3. Application of Developed Heat Radiation and Conduction Description for Calculation 

of Transient Heat Exchange Process in Selected System 

 

In order to better illustrate described small deviation approach based on stationary 

solution to model heat exchange dynamics, a simple heat exchange system is introduced. The 

system in question consists of heater, insulation around heater and object to be heated by heat 

radiation from the heater. Schematic representation is given in Fig. 5. 

 

 

Fig. 4. Schematic representation of chosen heat exchange system 

 

As it was described before, modelling of heat exchange dynamics is based on 

stationary solution. Therefore in beginning, before dynamic calculations of heat exchange 

process, stationary solution close to our interesting parameter (for dynamical calculations) 

range must be found. From stationary calculations heat powers Pi,cond,stat, Pi,rad,stat and 

temperature values Ti,stat can be found for all objects and surfaces. 

In order to further describe system in question, objects of main interest must be lined 

out. In this case one can assume that main objects are heater and object to be heated (Fig. 5). 

For those objects also total heat capacity cpm [J/K] (specific heat capacity at constant pressure 

selected due to reason, that it is the most probable case) must be determined. As next step heat 

balance equations for objects in interest must be created (14 – 15): 
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where Ph is heater power (usually electric), whereas Pcond and Prad are heat powers transferred 

trough conduction and radiation processes. It must be noted, that object has no direct power 

source, and therefore its temperature change is defined solely by heat transfer. Expression 

shown above (14 – 15) represents full heat balance equations for general case. For small 

deviations around stationary solution equations are similar (16 – 17): 
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where F is respective arbitrary parameter F small deviation around stationary solution. 

Bearing in mind the simple examples of heat conduction and heat radiation small deviation 
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description shown before, schematic final expressions for change of temperature deviations 

can be written (18 – 19): 
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It must be noted that expressions (18 – 19) are regrouped in respect to expressions (16 

– 17) in order to better represent the meaning of different parts. The coefficient before object 

temperature itself represents heat losses due to increase of object temperature, whereas 

coefficient before other objects (this case only one) represents heat gains due to increase of 

other objects. 

 

Conclusions 

 

The simplified non-stationary heat exchange description based on small temperature 

deviations can be used for the description of heating systems which have oscillations around 

the steady state. The steady state itself can change in time also with characteristic transition 

time much larger than characteristic time of considered oscillations. It has been numerically 

verified, that described simplified approach works with acceptable precision, if temperature 

field in constant temperature assumption for each body area does not change more than 10%. 
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