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Abstract 

 

The flow and heat transfer of molten silicon during Czochralski growth under the 

interaction buoyancy and crucible rotation in the Czochralski process are studied numerically. 

In this work we present a set of computational simulations using the finite volume package in 

order to analyse different instabilities induced by buoyancy, and centrifugal forces that occur 

in silicon Czochralski crystal growth in a traditional and a new systems.  

 
Introduction 

 

The Czochralski crystal growth is one of the most important methods of producing 

single crystals from the melt. The quality of these crystals depends on heat and mass transfer 

in the melt during growth, due to complex interactions of many driving forces including 

buoyancy, centrifugal, thermocapillary and Coriolis forces. Nearly all crystals have 

inhomogeneities and growth bands called striations [1]. Melt grown elements like silicon 

show striations due to impurities, in the case of silicon-oxygen striation from partial 

dissolution of quartz crucible. A time dependent melt flow causes the temperature fluctuation 

at the crystal/melt interface, leading to undesirable inhomogeneities such as doping striations 

and crystallographic defects in the crystal [2]. 

In this work we present a set of computational simulations using the finite volume 

package Fluent in two different geometries, a new geometry [3-7] as cylindro-spherical and 

the traditional configuration as cylindro-cylindrical in order to analyse different instabilities 

induced by buoyancy and centrifugal forces that occur in silicon Czochralski crystal growth.  

 

1. Physical and Mathematical Model 

 

1.1. Physical Model 
Schematic diagrams adopted in the present simulation are shown in Fig.1. The crucible 

contains silicon melt with height H and radius Rc and rotates at the angular velocity c in the 

clockwise direction. The crystal has a constant radius Rs. The melt/crystal interface is 

assumed flat with the melting temperature Tm. 

 

1.2. Mathematical Model 

To facilitate the procedure of modeling related to the considered problem, we admit 

some assumptions; the molten silicon is assumed to be a viscous, Newtonian and 

incompressible fluid satisfying the Boussinesq assumption. We assume the solid liquid 

interface and the free surface to be flat initially. The thermo physical properties of the fluid 

are constant except for the density variation in the buoyancy force term. The flow is 

symmetric in the axial direction. Fixed temperatures are imposed on the walls of the melt 
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crucible and the crystal melt interface. Considering the preceding assumptions, the resolution 

of the problem will be done in two-dimensional geometries, limited to axisymmetric sections 

of the crucible [5,6]. 

 

 

 

 
 

 

 

 

                                                    
                                                        

 

 

 

 

                                                                                      

                            

                       (a)                                                                            (b) 

Fig. 1. Traditional (a) and modified (b) Czochralski crystal growth systems 

 

The dimensionless governing equations for the fluid motion and temperature field 

derived under the above assumptions are 
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  measures the relative importance of heat transfer by conduction and convection.   

The non dimensional boundary conditions are as follows 
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Crystal melt interface                 0r zV V V     ,       0T  ,  

where 
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CcRRe   is Reynolds number associated to the rotating crucible. 
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The properties used in simulation are dimensionless parameters. The Prandtl number 

characterizing silicon is 0.0113.  We propose to maintain the Grashof number to 10
7
. 

The problem is solved using the finite volume package Fluent. The steady segregated 

axisymmetric swirl solver was used with the first order upwind discretization for convection, 

SIMPLE algorithm for pressure-velocity coupling and the PRESTO (PREssure STaggering 

Option) scheme for pressure interpolation. The convergence is handled by monitoring 

residuals of continuity, momentum and energy equations. 

2. Results and Discussions   

 

The aim of this work is based on the numerical study of the barocline instability effect 

induced by natural and forced convection (induced by crucible rotation) on flow pattern, 

temperature and pressure field in silicon Czochralski crystal growth process. By carrying out 

the convergence test of grid and residuals, we find a grid of 200*200 and residuals of 10
-6

. We 

maintain the Grashof number value to 10
7
, we modify the crucible rotation rate by increasing 

Reynolds number value. For the different analyzed cases we represent the corresponding 

streamlines, azimuthal velocity, vorticity, isotherms, and isobars contours. 
 

(a) 

 
 

(b) 

 
(c) 

 

 
 

 

 

Fig. 2. Streamlines, azimuthal velocity, vorticity, isotherms and isobars respectively for (a) 

Re=0, (b) Re=50, and (c) Re=100 
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(d) 
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For the low values of Reynolds number, we note the presence of only one big vortex 

occupying all the melt volume, it is induced by natural convection (buoyancy force), the melt 

is cooler near the surface of the crystal than along the crucible walls, causing the fluid to drop 

along the axis and rise on the outside. We note that the streamlines remain unchanged in the 

range of Re between 0 and 100. From Re=200, we note the appearance of an additional vortex 

below the free surface near the axis of symmetry, this bifurcation is caused by the presence of 

Fig. 3. Streamlines, azimuthal velocity, vorticity, isotherms and isobars respectively for (d) 

Re=200, (e) Re=400, (f) Re=700, (g) Re=700, (h) Re=800 and Re=900 
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a second convection mode in the silicon melt, it is the forced convection induced by rotation 

of crucible. By further increasing the rotation rate, the main vortex due to the natural 

convection becomes weak in intensity and volume and the forced convection becomes more 

dominant. We note that for higher values of Reynolds number as Re=900, the melt column 

beneath the crystal has the same intensity of stream function. 

By analyzing the contours of the azimuthal velocity, we note in all studied cases, the 

value of the azimuthal velocity at the crucible wall is equal to the value of the associated 

Reynolds number. 

By changing Reynolds number from Re=0 to Re=10, we note that these contours 

become almost parallel to the crucible wall. From Re=10 to Re=100, their shape is almost 

identical, and from the crystal rotation rate corresponding to the Reynolds value Re=200 

which corresponds to a transition, we note the appearance of a new inclusion near the axis of 

symmetry, this value can be called value of transition that corresponds to a Richardson 

number, Ri=250. We remind that the Richardson number Ri=Gr/Re
2 

is defined by the ratio of 

intensities of natural convection to forced convection. By increasing crucible rotation rate, we 

note that the line corresponding to the maximum azimuthal velocity moves toward the 

solidification interface. The shape of the azimuthal velocity lines becomes conical from the 

Reynolds number value Re=300, the basis of these cones is located on the upper surface and 

its vertex is near the bottom of the crucible. 

We note also that the high azimuthal velocity moves from the area near the axis of 

symmetry to the triple point, this latter plays an important role in crystal growth, it is defined 

by the coexistence of three phases (solid, liquid and gas) [5,6]. We also note that the number 

of azimuthal velocity lines increases under the free surface for large values of Reynolds 

number, then the radial gradient of this velocity is very high as the forced convection is 

dominant. 

By analyzing the contours corresponding to vorticity, we note that the overall shape 

remains the same from Reynolds number Re=0 to Re=50. In the region between the axis of 

symmetry and the triple point the vorticity becomes variable up to Re=100. From Re=700, we 

note the disappearance of the main vortex and the vorticity is nearly uniform throughout the 

melt.  

We note a slight change in isotherms, such that, for large values of Reynolds number, 

the shape of the isotherms becomes less sinuous, flattened in the column beneath the crystal 

by increasing the crucible rotation rate. The axial temperature gradient becomes uniform on 

the axis of rotation for higher values of Reynolds number. 

Unlike the temperature field, the pressure changes significantly, it increases in the melt 

while increasing the crucible rotation rate. 

Near the crucible bottom, the isobars are concave; we notice that this concavity 

disappears by increasing the rotation rate of the crucible until these isobars are evenly 

stratified at the upper surface of the melt. The radial pressure gradient increases, it appears 

clearly near the triple point. We note also that for Re=200 corresponding to Richardson 

number value Ri=250, new isobars appear near the axis of symmetry at the top of the melt, it 

is present with the main changes noted in the vorticity, which enables us to confirm the 

relationship between the vorticity and pressure field [7]. 

Now, in order to compare the traditional geometry to the hemispherical one, we 

calculate the velocity, temperature and pressure fields for the same Grashof number value 

Gr=10
7
 and Prandtl number Pr=0.0113 and for Reynolds number Re=200 that represents a 

value of transition. We note there is not a region of stagnation in the spherical crucible corner 

as for the cylindrical process. The convective vortex is bigger and near to the top in this case 

and there is only one small additional vortex under the free surface of the melt. 
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Conclusion  

 

In this work we present a set of computational simulations using the finite volume 

package Fluent in order to analyse the barocline instability induced by buoyancy, and 

centrifugal forces that occur in silicon Czochralski crystal growth.  

The velocity, temperature and pressure fields are calculated for a Grashof number 

value Gr=10
7
, Prandtl number Pr=0.0113 and different Reynolds number values that 

correspond to crucible rotation rates in the cylindrical and hemispherical systems.  

We found that for the low values of Reynolds number the buoyancy force is acting on 

melt flow so only one big vortex is present in the melt. For bigger values of Re there are 

several vortices. The value of the azimuthal velocity at the crucible wall is equal to the value 

of the associated Reynolds number. Near the triple point the vorticity becomes variable by 

increasing the velocity rate and it reaches its maximum at this point. 

We showed that the pressure field is more sensitive that the temperature to the 

centrifugal and Coriolis forces induced by the crucible rotation.  

Finally, the hemispherical crucible shape is found to be advantageous for crystal 

growth than the cylindrical one. 

Now, in order to compare the traditional geometry to the hemispherical one, we 

calculate the velocity, temperature and pressure fields for the same Grashof number value 

Gr=10
7
 and Prandtl number Pr=0.0113 and for Reynolds number Re=200 that represents a 

value of transition. We note there is not a region of stagnation in the spherical crucible corner 

as for the cylindrical process. The convective vortex is bigger and near to the top in this case 

and there is only one small additional vortex under the free surface of the melt. 
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Fig. 4. Streamlines, azimuthal velocity, vorticity, isotherms and isobars respectively for 

Re=200  


